
Copyright © 1999 Metrowerks, Inc. All Rights Reserved.

Porting From Microsoft¨

Visual C++¨ to CodeWarrior

A Metrowerks White Paper

By Rick Grehan

Porting From Microsoft¨ Visual C++¨
to CodeWarrior

This is a gathering of porting problems and solutions compiled by

CodeWarrior users and engineers.

By Rick Grehan

AS GROWING POPULATIONS of different CPUs and different operating systems
spread across the computing landscape, developers are increasingly presented with the
chore of "porting" an application. And it's no small chore. Moving an application from
one platform to another means dealing with differences in CPUs, operating systems, and -
- the focus of this paper -- development tools.

Many developers use Microsoft's well-known Visual C++ compiler -- part of Microsoft's
Visual Studio. Though its popularity is widespread and well-deserved, VC++ is

nonetheless limited to use on Windows operating systems (Windows 95, 98, and NT).
There is, for example, no version of VC++ for Macintosh systems, nor for Unix systems.
A programmer who creates an application on Windows using VC++ and endeavors to
move that application to, say, Unix is moving code not only to a different operating
system, but to a different development toolset as well. Problems often arise that have
nothing to do with the change in CPU or the change in OS.

Metrowerks CodeWarrior supports development for all the Windows OSes, as well as the
Mac OS, Solaris, Linux, NetWare, the Palm OS; game development platforms such as

PlayStation, Nintendo, and Sega; and realtime operating systems such as QNX, Nucleus
Plus, and VxWorks. In addition, CodeWarrior compilers exist for x86 processors,
Motorola 68K, MIPS, NEC V800, PowerPC, M-Core, Hitachi SH, Philips Trimedia, and
Motorola DSP568xx. More processors and operating systems are on the way. Because
Metrowerks engineers regularly cope with moving the CodeWarrior development
environment to new CPUs and OSes, they are keenly aware of porting issues.

Porting From Microsoft® Visual C++® to CodeWarrior 2

www.metrowerks.com FINAL 4/22/99

A Porting Toolchest

This white paper is a compendium of the more significant snares that CodeWarrior users,
developers, and field-applications engineers have encountered as they have moved code
from the VC++ environment to CodeWarrior.

Every application is unique. Porting problems that you tackle in one application may
never surface in the next. It is therefore difficult to attach a "likelihood of occurrence" to
any of the problems listed below. Nor can we ascribe to them a "severity level" to
somehow gauge how far-reaching a problem might be. Something as (apparently)

innocuous as the way the runtime system handles allocating zero-length memory can
cause as much trouble as the runtime's handling of floating- point comparisons.

Consequently, the topics below are arranged in no particular order. This is a gathering of
porting problems and solutions compiled by CodeWarrior users and engineers. We have,
whenever possible, included the why's and the how-to's, so that if your next porting

problem is one that someone else has already dealt with -- you won't have to.

Functions Unique to Microsoft

The Microsoft runtime library supports a number of functions that -- though useful -- are

not part of the ANSI standard. Here are a couple of examples:

• _strnicmp . This function has the same prototype as the standard strncmp()
function. It compares two strings --given pointers as well as a length count. The
difference is that _strnicmp() is case-insensitive; strncmp() is case-sensitive.

• _wtoi . This function is similar to the ANSI-compatible atoi() , which converts
an ASCII string to an integer (given a pointer to the string). The _wtoi() function,
on the other hand, accepts as an input argument a pointer to a "wide" character string.
(A "wide" character string is Microsoft's terminology for Unicode characters.)

A list of the non-ANSI functions supplied by Microsoft that CodeWarrior supports is

shown in Table 1.

If your code uses any of the functions shown in Table 1, you can still use that code
without having to write your own versions of the functions. For CodeWarrior compilers
that 8target Windows systems, the functions are part of the MSL (Metrowerks Standard
Library); you need only provide the header, extras.h . For CodeWarrior compilers that

target non-Windows systems, you'll need to include the extras.c file in your project.

Porting From Microsoft® Visual C++® to CodeWarrior 3

www.metrowerks.com FINAL 4/22/99

_access _getdrive _strdup
_alloca _getdrives _stricmp
_beginthreadex _getHandle _strlwr
_chdir _get_osfhandle _strnicmp
_chdrive _heapmin _strrev
_close _isatty _strupr
_creat _itoa _tell
_endthreadex _itow _ultoa
_fcntl _lseek _unlink
_fdopen _makepath _wcsdup
_fileno _mkdir _wcsicmp
_findclose _msize _wcslwr
_findfirst _open _wsnicmp
_findnext _open_osfhandle _wcsnset
_fstat _read _wcsrev
_fullpath _rmdir _wcsset
_gcvt _searchenv _wcsupr
_getcwd _splitpath _write
_getdcwd _stat _wstrrev
_getdiskfree _strdate _wtoi

TABLE 1. These functions are unique to VC++ (they are not part of the ANSI standard C

runtime library). However, CodeWarrior does support these functions.

(Note: The MSL C reference manual, provided as part of the CodeWarrior development
tools, lists all functions supported by MSL. In addition, associated with each function is a
compatibility table that shows which operating systems and/or chips that function is

compatible with.)

Microsoft's Inline Assembler

CodeWarrior supports inline assembly (the ability to include assembly language in C

source code) that is nearly compatible with the assembly allowed in VC++. There are
minor differences. For example, VC++ ignores letter case when resolving labels. In the
following code, both jmp statements will branch to label goThere :

Porting From Microsoft® Visual C++® to CodeWarrior 4

www.metrowerks.com FINAL 4/22/99

 ...
 jmp goThere
 ...
 jmp gothere
 ...
goThere:
 ...

In contrast, CodeWarrior sees labels through case-sensitive eyes. The above snippet of
inline assembly code would cause the compiler to emit an error on the second jmp

statement. The compiler would complain that no "gothere" label was defined. The fix is

simply to change "gothere" to "goThere".

In addition, CodeWarrior does not currently support the following assembler directives
recognized by VC++:

• EVEN - This directive pads the output into the object file so that the next variable
defined is aligned to the next even address (word boundary). Though CodeWarrior
does not support this directive, it does support ALIGN, which pads the output to a
specified alignment. Consequently, you can use the directive ALIGN 2 in place of
EVEN.

• LENGTH - This operator returns the number of elements in an array. LENGTH will
return a 1 for non-array elements.

• TYPE - This operator returns the number of bytes in each data object of a particular
variable. If the variable is an array, TYPE returns the size of one element of the array.

LENGTH and TYPE are often used to determine the number of bytes in arrayed data
items. In fact, a data array's TYPE times its LENGTH is the total number of bytes
consumed by the data array. The array's TYPE times its LENGTH will return the same
value as will the operator SIZE on the array. CodeWarrior does support the SIZE

operator.

(Note: Support for LENGTH and TYPE will be available in the Professional 5 release of
CodeWarrior.)

Pointer Conversion

Many data objects in the Windows API are manipulated via handles, and the Windows
header files define a variety of handle types. Some programmers of older Window
programs were lax in their use of the handle datatypes. Such programmers would use one
handle data type where a different one was called for. (Windows include files define a
generic datatype called HANDLE. Many programmers would simply use the generic

Porting From Microsoft® Visual C++® to CodeWarrior 5

www.metrowerks.com FINAL 4/22/99

HANDLE when a specific handle datatype should have been used.) Since the handle size
is the same regardless of handle type, this caused little problem if the compiler simply

ignored the misuse -- which VC++ did.

To manage this problem, a selection in one of the CodeWarrior settings panels allows
you to relax the rules the compiler uses when converting from one pointer type to
another. (This selection can be found in the "C/C++ Language" settings panel for the
project. The checkbox is labeled "Relaxed Pointer Type Rules".) So, for example, if a
programmer had created a handle to a window and defined that item as being of data type
HWND, then later passed that handle as a data type HANDLE, without the relaxed rules
selection, the compiler would emit an error. With the selection active, the compiler would

allow a more lax use of handles.

This feature is ignored in C++ programs. C++ requires rigorous pointer use.

(Note: Turning off the relaxed rules is similar to enabling the STRICT symbol in VC++.)

RTTI

RTTI (runtime type identification) is a powerful feature in C++ that allows an application
to determine an object's type at runtime. RTTI is available to the programmer through

two operators: typeid() and dynamic_cast<>.

The typeid() operator takes an object or expression and returns a reference to an
object of class type_info . The type_info class provides several methods that allow
the program to deduce the argument object's type. For example, the type_info .name
method will return a pointer to a string that contains the human-readable name of the
object's type.

The dynamic_cast<> operator performs casting at runtime, rather than at compile
time -- hence, its "dynamic" nature. Typically, a program will use this operator to cast a
base-class pointer to a pointer of one of the base class's derived classes.

Now, here's the catch. Though both VC++ and CodeWarrior's support of RTTI is
ANSI/ISO-compatible, the ANSI/ISO specification of RTTI is not particular about how
the runtime object's type information is to be internally maintained by the runtime.
Hence, the internal representation of an object's type is different in VC++ than in
CodeWarrior. The result is that, if you have linked a library built by VC++ into your

CodeWarrior application, and that library has created an object, attempting to use the
typeid() or dynamic_cast<> operators on that object will fail. The CodeWarrior
runtime will simply be confused by the internal structure of that object.

Porting From Microsoft® Visual C++® to CodeWarrior 6

www.metrowerks.com FINAL 4/22/99

The solution to this is to obtain the source code for any object files or libraries that
include objects on which your application calls RTTI functions. Either include the source
code in your project, or build a library using the CodeWarrior compiler and add that

library to your project.

Name-Mangling

Name-mangling is a technique by which a compiler encodes function names whereby the

full prototype of the function is retained. This allows the compiler to distinguish between:

 int getmin(int, int)

 and

 float getmin(float, float)

Both functions are called "getmin() ", but one processes integers while the other

processes floats.

The VC++ compiler has difficulty distinguishing between non-template functions and
template functions that do not include the template type (the formal parameter) in the
function's parameter list. The root of this problem has to do with the name-mangling
techniques used. For example, suppose you have defined the following template and non-

template functions in the same application:

template <> int foo<class T>(void)
{ ... }

int foo(void);
int foo()
{ ... }

If, later in your application you call the functions:

int i,j,k;
...
i=foo();
j=foo<int>();
k=foo<long>();
...

the compiler will be unable to distinguish among the various calls to foo().

Porting From Microsoft® Visual C++® to CodeWarrior 7

www.metrowerks.com FINAL 4/22/99

The CodeWarrior compiler will have a similar name-mangling problem with the above
code, but only with ARM conformance on (one of the selections in the "C/C++

Language" settings panel).

(Note: ARM conformance, when active, assumes that the code will adhere to
specifications spelled out in the Annotated C/C++ Reference Manual [Margaret A. Ellis
and Bjarne Stroustrup, Addison-Wesley, ISBN: 0201414591]. Having ARM
conformance active enables the handling of scopes for variables declared in for() loops
-- the variable's scope extends beyond the loop if declared in the for() expression itself.
It also disables protected access base classes, disables variable declarations in

switch() expression lists, and other syntactic nuances.)

There are two solutions. One is to turn off ARM conformance. Your source code may not
require ARM specifics. The other solution is to rewrite any template function so that they
include the formal parameter as one of the function arguments. (This latter solution is
recommended by Microsoft.)

(Note: Turning off ARM conformance solves the preceding problem for the Professional
5 version of CodeWarrior. With previous versions, you'll have to rewrite the template

function. A similar problem occurs if you define a template function as follows:

template <class T> int foo(void) { }

and a non-template function:

int foo(void) { ... }

Compiling the above under Professional 5 will produce an error message; the compiler
will complain that the foo() function has been redefined. Earlier versions of CodeWarrior

will not complain, but are unable to distinguish between these two functions.

In a similar vein, the CodeWarrior compiler can sometimes fail to properly mangle the
name of a function that returns an enum. If this happens, the linker may fail to locate the
function. The problem can be corrected by selecting the "Enums Always Int" checkbox
from the project's C/C++ Language settings panel.

Floating-Point Differences

The IEEE floating-point specifications (IEEE 754) define a number of special values, one
of which is referred to as NaN (not a number). A NaN is represented by a specific
bitpattern designed so that floating-point runtime routines (or a FPU, if one is available)

will not mistake the bitpattern for a valid floating-point number.

Porting From Microsoft® Visual C++® to CodeWarrior 8

www.metrowerks.com FINAL 4/22/99

Certain floating-point functions will return a NaN to indicate that the program attempted
an invalid operation. Examples include attempting to divide zero by itself and attempting
to take the square root of a negative number. (You can refer to a number of sources that
catalog the specific operations that yield an invalid result. One is Intel's 486
Microprocessor Family Programmer's Reference Manual. Another is Gary Kacmarcik's

"Optimizing PowerPC Code" from Addison- Wesley. Another good source is Apple's
PowerPC Numerics manual, available for download from:

http://developer.apple.com/techpubs/macos8/Utilities/PowerPCNumerics/

powerpcnumerics.html)

The problem in porting from VC++ to CodeWarrior arises from two characteristics of
NaNs, and how they are treated.

First, NaNs have the property of "percolating" through floating-point operations. That is,
if you have a complex floating-point expression, and a NaN is generated somewhere
"inside" the expression, the NaN will pass through the entire expression so that the result
is a NaN.

Second, NaNs are unordered. They are considered by the floating-point library to be

neither bigger, smaller, nor equal to ANY other floating- point values.

The IEEE floating-point specification dictates that the result of floating-point
comparisons should be false whenever a NaN is involved, with the exception of the !=
(not equals) comparison, which always returns true. Microsoft's C++ compilers do not
adhere to this, with the result being that the results of comparisons involving NaNs can
vary depending on the structure of the expression involved. CodeWarrior does adhere to

the IEEE specification.

It is possible, then, that a comparison involving a NaN as one of the operands will behave
differently when compiled under VC++ than when compiled with CodeWarrior. If you
suspect that your program might have this problem, the routine in Listing 1 will enable
the floating-point exception for invalid operations. Include this routine in your program,
and call it before executing any floating-point operations.

If a NaN *is* at the heart of the problem, it will throw an exception when the program

attempts to use it as part of a comparison.

Porting From Microsoft® Visual C++® to CodeWarrior 9

www.metrowerks.com FINAL 4/22/99

#include <fenv.h>
void enable_nan_exception(void)
{
 fenv_t fe;
 // This should turn on exceptions
 // on NaN generation
 fgetenv(&fe);
 fe=fe & ~FE_INVALID;
 fsetenv(&fe);
}

Listing 1. This routine unmasks the "invalid floating-point exception" bit in the floating-

point control word. If a NaN is used as a factor in a subsequent floating-point expression,

an exception is thrown. What catches that exception varies from system to system.

Usually, a handler in the OS catches it. You can, however, write your own exception

handler.

Thread Functions

Many books describing Win32's thread support -- and many Microsoft documents -- warn
the programmer that the preferred function for creating and starting a thread is the
_beginthread() function. (Consequently, terminating the thread should be done using the
_endthread() function.) A similar function is _beginthreadex() -- the "ex" indicates that
this is an "extended" call. The _beginthreadex() function provides all the capabilities of
_beginthread() plus three additional arguments. (The details can be found in any Win32

documentation.)

The _beginthread()/_beginthreadex() calls were preferred over the more spartan
CreateThread() function because the latter performed no initialization needed for the
runtime library. For example, the random number generation routines in the standard
runtime library require a "seed" value to be stored somewhere. This seed value is used to
generate the next random number in the sequence. Such storage must be made available
on a per-thread basis. CreateThread() doesn't allocate that storage -- _beginthread() and

_beginthreadex() do.

However, beginthread() is a deprecated call. The reason lies not within beginthread(), but
within the required, accompanying endthread(). Because endthread() closes the file
handle, it's possible that a thread could be created, execute, and terminated, all before the
actual call to beginthread() returned from the *creating* thread. The result is that the

Porting From Microsoft® Visual C++® to CodeWarrior 10

www.metrowerks.com FINAL 4/22/99

creating thread would be left with a handle that referenced a non-existend thread, with no

indication that the thread had run and terminated.

Though VC++ continues to support _beginthread()/_endthread() , even
Microsoft suggests programmers move to _beginthreadex()/endthreadex() .
Thankfully, since the two functions are so similar to one another, this is not an
overwhelming issue. In most cases, the arguments in _beginthreadex() that have
no counterpart in _beginthread() can simply be set to an appropriately-typed NULL
value. And, of course, you'll need to replace _endthread() with
_endthreadex().

Finally, both _beginthread() and _beginthreadex() create a handle to the
created thread. The _endthread() call automatically closes the handle, so an explicit
call to CloseHandle() was unnecessary. However, _endthreadex() does not
automatically close the thread handle. You'll need to add CloseHandle() call to your
source code in the appropriate place.

Versions of CodeWarrior before Professional 5 support only
_beginthreadex/_endthreadex . The Professional 5 release of CodeWarrior will
contain an implementation of beginthread()/endthread() -- with all the
accompanying warts. The implementation is provided for portability's sake. Nevertheless,
use with caution.

C9X support

C9X is a proposed update to the ANSI standard for the C programming language. The
standard is still in deliberation, though the original C9X charter had set a goal of being
completed by the year 2000. Time will tell.

However, portions of the standard have been accepted by many compiler companies.

Developers are even now using elements of the C9X standard.

The functions and macros already accepted fall primarily in the area of floating-point
routines. CodeWarrior already supports many of these C9X-proposed functions and
macros. Microsoft has an equivalent subset, though their names are slightly different than
the names suggested in C9X (and their interfaces may differ). Table 2 shows a list of
functions and macros already supported by Metrowerks and (where they are available)

their Microsoft equivalents.

Porting From Microsoft® Visual C++® to CodeWarrior 11

www.metrowerks.com FINAL 4/22/99

C9X FUNCTION SUPPORTED

BY CODEWARRIOR

MICROSOFT

EQUIVALENT

acosh ---

asinh ---

atanh ---

copysign() _copysign()

exp2() ---

expm1() ---

fdim() ---

fmax() __max()

fmin() __min()

fpclassify() _fpclass()

hypot() _hypot()

isfinite() _finite()

isnan() _isnan()

log1p() ---

log2() ---

logb() _logb()

nan() ---

nearbyint() ---

nextafter() _nextafter()

remainder() ---

remquo() ---

rint() ---

rinttol() ---

round() ---

roundtol() ---

scalb() _scalb

trunc() ---

Table 2. C9X Math macros and functions supported by CodeWarrior, and their Microsoft

equivalents.

Min and max

The Microsoft windef.h header files defines a pair of macros, min() and max() .
They are simple macros that resolve to the conditional ("? :") operator. However, the
standard template library (STL), now part of the C++ standard, defines a pair of

Porting From Microsoft® Visual C++® to CodeWarrior 12

www.metrowerks.com FINAL 4/22/99

algorithms, also called min() and max() . As you might guess, there's a collision

waiting to happen.

Fortunately, Microsoft has provided a means of disabling the min() and max() macros
in the windef.h header file. Those macros are bracketed in an #ifdef statement. So, if
your application uses the min() and max() template algorithms, you can disable
Microsoft's min() and max() by adding the line

#define NOMINMAX

just prior to the #include <windows.h> line in your source code. (The
windows.h file is a standard include in all Windows applications. The #include to
windef.h is nested within windows.h .)

Multiple Definitions in MFC and MSL

There are multiple definitions between code in the Metrowerks runtime (MSL) and the
MFC libraries. The MFC libraries override the MSL. (Most often, developers are "bitten"
by multiple definitions for the "new" and "delete" operators.) This can cause multiple
definition errors when an application is linking.

The solution is to change the link order in the CodeWarrior project so that the

Metrowerks library files appear after the MFC library file. You can do this using the "link
order" view within a CodeWarrior project. The link order view shows a list of a project's
files, arranged in the order they will be passed to the linker. You can simply drag and
drop files to different locations in the list to modify the order.

(Note: The CodeWarrior files are MWCRTL.DLL or MWCRTL.Lib for the release

version of a target, and MWCRTLD.DLL or MWCRTLD.Lib for the debug version.)

Allocating Nothing

The ANSI specification for the behavior of malloc(0) says that the call can either
return a pointer to a very small chunk of memory, or it can return a NULL. VC++ returns
the former, CodeWarrior returns the latter. Both results are valid, and both work with any

subsequent calls to free() or realloc() .

Note that calls to malloc() (or calloc() or realloc()) with data items of zero
length are discouraged by ANSI specifications; precisely because the result is
implementation-dependent.

Porting From Microsoft® Visual C++® to CodeWarrior 13

www.metrowerks.com FINAL 4/22/99

However, the discrepancy between VC++ and CodeWarrior may cause problems in some
programs, if the programs examine the returned value. For example, a program might
misinterpret the NULL result of the call to malloc() as an indication of insufficient

memory (which the NULL result otherwise indicates).

These differences in behavior between VC++ and CodeWarrior will be corrected in the
Professional 5 release of CodeWarrior with the addition of a define statement. Add the
following to the start of a source file:

#define _MSL_MALLOC_0_RETURNS_NON_NULL

and any calls to malloc() in that file will behave as does VC++. Of course, the real
solution to this problem is not to make any calls to allocate (or reallocate) memory of

zero size (as suggested by the ANSI standard).

Moving A Project to CodeWarrior

VC++ project files are not compatible with CodeWarrior files. The Professional 5 version
of CodeWarrior, however, will introduce a new Makefile Converter Wizard. This wizard
will significantly reduce the time it takes to get a VC++ project into CodeWarrior. As the
name implies, the wizard "imports" a makefile; creating a corresponding CodeWarrior

project.

A developer can move a project from VC++ to CodeWarrior by:

1) Exporting the makefile from VC++. (This creates an nmake-compatible makefile

from the VC++ project.)

2) Making a backup of the makefile and source files. (If some problem occurs during
conversion, the developer can always restore the original project from the backup.)

3) Running CodeWarrior's Makefile Importer Wizard.

Conclusion

Software is an organic, growing thing. While we sleep, engineers at Microsoft and
Metrowerks are at work modifying their respective development tools; improving the

compilers, adding new features, making them faster and (we hope) smarter. This nonstop
growth is a two-edged sword. It means better tools for us all, but it also means more
opportunities for those sorts of discrepancies that we've described above.

Porting From Microsoft® Visual C++® to CodeWarrior 14

www.metrowerks.com FINAL 4/22/99

If we've left something out in the preceding discussion, we encourage you to contact
Metrowerks so we can share your problem -- and its solution -- with others. One popular
Metrowerks motto is: "We listen, we act." Please visit the support section of the

Metrowerks website at www.metrowerks.com/support.

The author would like to thank the many Metrowerks engineers who contributed to this
white paper. It would not have been possible without their experiences and insights.

